
EE Senior Design Fall 2007

R. M Schafer Task 5

Task 5 Due: November 8, 2007
Task Purpose: Timers and Interrupts – Part 1
The purpose of the next two tasks is to develop familiarity with the use of timers and
interrupts. The programming problem set up here is completely artificial.

In previous tasks, we have displayed the increment of a variable in the LED’s connected
to port D, and we have rotated a message in the LCD display. In tasks 5 and 6 we are
going to use timers and interrupts (rather than the delays that were used in the previous
tasks) to control the speed of the shifting of the LCD display and the speed of the
increment of the LED display. In the first task, we will use a single interrupt and shift a
message in the LCD display. In task 6, we will add a second interrupt and display a
count in the LED’s.

Timers:
The 18F4620 has 4 timers. These devices can be used either as timers, where the
counting is based on the system clock (specifically 4oscf), or as counters, where the
count is based on the occurrence of an external event. The devices generate an
interrupt when the count rolls over, going from all 1’s to all 0’s.

A timer typically has an 8 or 16 bit register that holds the count, and usually the signal
that is being counted can be pre-scaled (divided by some power of 2). To generate an
interrupt after a certain period of time, it is necessary to set up the counter with the
desired pre-scale and other setup parameters, and then load a value into the count
register such that the timer count will roll over in the desired amount of time.

Interrupts:
Interrupts involve both hardware issues and software issues. In hardware, we need to
set all the appropriate bits to enable the desired interrupt to happen. In software, we
need to write an interrupt service routine.

The compiler provides two built in functions for handling interrupts. They are:

void interrupt(void) // high priority interrupts
void interrupt_low(void) // low priority interrupts

All these function do is place the code you write at the proper location in memory (that
location being the location where the microcontroller begins execution on an interrupt.)
Since there are no arguments sent or received by these functions, all variable using in
them must be global. (All the register names, defined in the header file, are global
variables.) It is sufficient to only use high priority interrupts (the default.)

Semaphores:
In general, you want to, as much as possible, the amount of code that is part of your
interrupt service routine. There is an additional limitation that comes from our compiler,
in that you cannot have calls to the same function from two different execution threads.

EE Senior Design Fall 2007

R. M Schafer Task 5

Simply put, this means that any functions that are called in the non-interrupt service
code cannot be called in the interrupt service routine.

A simple solution to minimizing the code required in the interrupt service routine is to
use a signal called a semaphore that is set in the interrupt service routine to signal the
code in the main program to do something. Once the main program does the desired
actions, the semaphore is cleared and thus the condition won’t occur until the next time
there is an interrupt.

Programming Trick:
We will be using timer 0 in this task, which can be configured as a 16 bit counter. The
two 8 bit variables that are declared in the header file are tmr0h and tmr0l, holding
the high and low byte of the 16 bit count respectively. It would be
nice if we could deal with these two registers as a single variable. In
some circumstances, including this one, we can. Looking at a
portion of the memory map of the 4620, we see that these two
values are located in sequential locations in memory, and that the
lower byte is at a lower address in memory. When 16 bit values are
stored in our compiler, the low byte is stored at the lower memory
location, so we can overlay a 16 bit variable over these two 8 bit
variables and deal with this as a single variable. Either of the two
statements that follow will create a 16 bit variable called tmr0_reg
that overlays the two 8 bit registers of timer 0 in the correct way.

unsigned short tmr0_reg@0xFD6;
unsigned short tmr0_reg@TMR0L;

Program Details:
In this task, you will be writing an interrupt driven program that will shift the contents of
the LCD display once per second.

1. Using the 18F4620 data sheet, list the appropriate settings (registers and bits
within those registers) so that timer0 will provide an interrupt every second.
Note that this involves timer0 settings, as well as the value that is loaded into
the timer0 count registers.

2. Using the 18F4620 data sheet, list the appropriate settings so that timer0 is
able to interrupt the processor.

3. Write a program that will write a message to the LCD display, and then shift the
LCD display once per second, using timer0 and interrupts.

4. Verify that you program works correctly. Note that if you are having trouble, you
might consider using the toggle of a bit and the logic analyzer to see, for
example, whether you are getting an interrupt.

EE Senior Design Fall 2007

R. M Schafer Task 5

Report:

In addition to the answers to the questions posed in this task, please include a
listing of the software you have written as part of this task in your task report.

